
A Review of Security Metrics in Software
Development Process

Smriti Jain#, Maya Ingle*
#MCA Department, SRGPGPI

*School of Computer Science, DAVV

 Indore, M.P., India

Abstract — Security level, security performance, and security
indicators have become standard terms to define security
metrics. The data derived from these metrics helps in
measurement of software security. The metrics help achieve
security objectives – confidentiality, integrity and availability.
The security can be assessed for further improvement during
development process of the software or the product itself. The
security assessment is helpful for software developers, risk
management team, executives of the company, etc. Our paper
reviews both the kinds of metrics and confers the results.

Keywords— Security Metrics, Software Development Process.

I. INTRODUCTION

Software development is a complex task that involves a
number of stages such as inception, initial design, detailed
design and development, implementation and testing,
operation, upkeep and retirement. Earlier, it was a trend to
develop software that meets the functional needs of the
customers in organizations. Whereas, in present scenario
computers manage the complete working and business of an
organization, which are having various branches across the
globe. In the interconnected electronic world, softwares are
prone to various kinds of attacks which raised the need for
securing the software. Any flaw contained in the software may
create the environment vulnerable. The growing number of
attacks has forced the organizations to incorporate the aspect
of security during development process rather than
considering during post development phase. It has been
observed that 90% of vulnerabilities occur as a result of flaws
in design and coding [1]. Security considerations when
considered as part of Software Development Process (SDP),
results in a more secured product [2]. Microsoft (Security
Development Lifecycle), Cigital (Touchpoint Process) and
OWASP (Comprehensive Lightweight Application Security
Process) are major players to utilize secured software
development process. These models address good (but are not
generalized) software engineering practices. The models focus
on positive practices to include security in a software product,
and process maturity [3]. Although, these models not
generalized and are difficult to use.

The security requirements when given importance as
functional requirements, needs to be measured. Metrics help
the project management team to effectively manage the
product as well as the software development process. Metrics
aid in analysis and early detection and correction of the

functionalities of the software. The metrics can assess the
security risks more efficiently when considered during
software development process. One of the approaches to
develop security metrics is Goal/ Question/ Metric (GQM)
approach. A set of metrics have been developed using GQM
approach to assess security risks throughout the various stages
of SDP [4]. Center for Internet Security (CIS) provided a set
of security metrics related to risk management wrapping
aspects of business functions. The categorization done is
Incident Management, Vulnerability Management, Patch
Management, Application Security, Configuration
Management and Financial Metrics. The metrics are also
organized on the basis of purpose and audience viz.
management metrics, operational metrics, and technical
metrics [5]. Research report of CERT by Software
Engineering Institute presents a paper on measuring software
security. The paper gives a set of security metrics that are
considered during the software development process (SDP)
viz. requirements engineering, architecture and design, coding
and testing. Some of the metrics defined are percent of
relevant security principles reflected in requirements
specification, Percentage of architectural/ design components
subject to attack surface analysis and measurement,
Percentage of software components subject to static and
dynamic code analysis against known vulnerabilities and
weaknesses, Percentage of defects discovered during testing
that was injected in coding; in architecture and design; in
requirements specification etc. [6]. The code metrics are also
defined as the representative weakness of software i.e.
weaknesses that lead most vulnerabilities to be exploited by
the attackers [1]. Various existing standards like Common
Criteria, ISO/ IEC 27004, NIST 800-55, etc. define security
metrics and are too broad to provide precise security
definitions and are not able to cover all security aspects [16].
Other than the metrics defined by standards, Mellado
enumerates security metrics for object oriented class diagrams,
Security estimation framework, attack surface of a system,
Common Weakness Enumeration (CWE), Common
Vulnerability Scoring System (CVSS) and Common Misuse
Scoring System (CMSS). The various security metrics are
discussed and compared on the basis of security
characteristics like authenticity, confidentiality, conformance,
detection of attacks, availability, integrity, non-repudiation,
traceability etc. in [7]. Literature review reveals that the most
of the relevant security metrics either focus on assessing
security of software on system level perspective or regarding

Smriti Jain et al / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2627-2631.

2627

inclusion of security metrics during software development
stages. But this realization is not at a glance. However, it is
possible to judge the scope to develop security metrics.

The security of software can be monitored systematically
using security metrics. We first discuss the software
development process along with the importance of security at
its various stages in Section 2. Section 3 presents a review of
various security metrics in software development process as
well as system level security metrics. Finally, we conclude
with results in Section 4.

II. SECURITY IN SDP

To understand the significance of security, we discuss the
software development process and the importance of security
aspect in the SDP.

A. Software Development Process

A number of general software development models are in
practice like waterfall model, prototype model, RAD,
incremental model, iterative model etc. A typical software
development process begins with requirements gathering,
analysis, design, coding and implementation, testing, and
maintenance. The system requirements stage emphasizes on
gathering requirements from customers. The requirements
mainly relate to software functionality and the quality
attributes including Non-Functional Requirements (NFR).
After gathering requirements, analysis of the scope of
development is determined. What and why of requirements is
converted to design in the next stage. The design mainly
illustrates the major components of the software and their
relationships. The design can be detailed to even take care of
NFRs. The design elements includes functional hierarchy
diagrams, screen layout diagrams, tables of business rules,
business process diagrams, pseudocode, and a complete
entity-relationship diagram with a full data dictionary that
describes software in sufficient detail so that the programmers
may develop the software easily [8]. Coding implements the
design specification. Developers also perform unit and
module testing and further integrates the system. Testing is the
final step towards all unaddressed issues of the previous
stages. It reports the errors, verifies if the system meets the
requirements, the design, and expected work. Testing judges
the quality of the product and identifies the risks associated.
Once the software is deployed, new users need to be trained.
Lack of training increases the chances of not adopting the
software. Maintenance phase includes correcting faults,
adapting environment, changing and enhancing the delivered
and installed product. Maintenance also helps to cope up with
newly discovered problems.

B. Importance of Security

With increased connectivity, security has become one of the

very important considerations of software as the systems are
becoming more complex in nature. Although security is
critical to many domains like banking, airline, national

defence etc., experience of organizations show that security is
still not given due importance during software development
process. A study had shown that 47% of banks place secure
login boxes and 55% put contact information and security
advice on insecure pages [9]. To implement security in
software development process, firstly sensitivity of
information should be analysed. This will help in taking
decisions regarding security needs of the organization.
Security can be implemented during SDLC by considering all
phases of software development starting from requirements
gathering to maintenance. There are number of security issues
at every stage of software development. A widespread cause
of defect in a product is requirements gap. This gap is result of
lack of knowledge regarding security issues at the business
level as well as lack of understanding of attack scenarios. The
security requirements if understood well can lead to secured
product. Similarly, the insecure design is result of not
considering security as prime objective, and also due to lack
of knowledge of security principles, guidelines and attack
patterns [8].

III. SECURITY METRICS – A REVIEW

We discuss existing security metrics in SDP as well as at
system level in this section.

A. Security Metrics in SDP

A number of security metrics have been specified which are
further explained that portray the security issues of different
software development stages.

 Requirements Gathering and Analysis - The security can be
assessed during requirements phase using metrics like Total
number of security requirement (Nsr), Ratio of security
requirements (Rsr), Number of omitted security requirements
(Nosr) and Ratio of the number of omitted security
requirements (Rosr) [4]. The measures for requirements
engineering phase also include Percent of relevant software
security principles reflected in requirements specifications,
Percent of security requirements that have been subject to
analysis, and Percentage of security requirements covered by
attack patterns, misuse/ abuse cases, and other specified
means of threat modelling and analysis [6].

 Software Design - The design metrics established include
Number of design decisions related to security (Ndd), Ratio of
design decisions (Rdd), Number of security algorithms (Nsa),
Number of design flaws related to security (Nsfd), and Ratio
of design flaws related to security (Rfd) [4]. Architecture and
design metrics include Percentage of architectural/ design
components subject to attack surface analysis and
measurement, Percentage of architectural/ design components
subject to architectural risk analysis, and Percentage of high-
value security controls covered by security design patterns [6].
A set of metrics have been derived from view point of
information flow based on object-oriented design artefacts viz.
composition, coupling, extensibility, inheritance and design
size of the given object-oriented, multi-class program.

Smriti Jain et al / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2627-2631.

2628

CC is a set of critical classes in a design D and CP is a set of
the composed-part critical classes in the same design. The
Composite-Part Critical Classes metric is given as

A set of classes, C in a design D, set of classified attributes as
CAj, and (CAj) is the number of classes which may interact
with classified attribute CAj.. The Critical Class Coupling,
CCC metric for design D is expressed as

The Classified Methods Extensibility metric is defined as

Where, CM is a set of classified methods in a design D and
ECM is a set of extensible classified methods in the same
design such that ECM CM.

Metrics are defined for Inheritance for Critical Superclasses
Proportion (CSP), Critical Superclasses Inheritance (CSI),
Classified Methods Inheritance (CMI), and Classified
Attributes Inheritance (CAI).

A set of Critical Classes (CC) and Critical Superclasses in the
same hierarchy (CSC) such that CSC CC. CSP is defined
as

A set of classified methods (CM) in hierarchy H, the classified
methods inherited (MI) in the same hierarchy such that

, then CMI metric is given as

A set of Classes, Cj for Hierarchy, H, a set of Critical
Superclasses (CSCk) in same hierarchy, and

. Let be the number of classes which may
inherit from superclass CSCk, then CSI is defined as

CA be the set of classified attributes in Hierarchy H, classified
attributes inherited (AI) in the same hierarchy, and ,
then CAI metrics is given as

Lastly, the Critical Design Proportion Metric is given as

Where, C is set of classes in design D, CC is critical classes in
same design such that [11].

 Coding/ Implementation – A number of coding/
implementation metrics recognized consist of Number of
implementation errors found in the system (Nerr), Number of
implementation errors related to security (Nserr), ratio of
implementation errors that have impact on security (Rserr),
Number of exceptions that have been implemented to handle
failures related to security (Nex), Number of omitted
exceptions for handling execution failures related to security
(Noex), and Ratio of the number of omitted exceptions (Roex)
[4]. Security measures for coding involve Percentage of
software components subject to static and dynamic code
analysis against known vulnerabilities and weaknesses,
Percentage of defects discovered during coding that was
injected in architecture and design in requirements
specification, and Percentage of software components subject
to code integrity and handling procedures, such as chain of
custody verification, anti-tampering, and code signing [6].
The metrics are also defined at the source code level like Stall
Ratio, Coupling Corruption Propagation (CCP), Critical
Element Ratio (CER). Stall ratio measures program’s
progress as hindered by vivacious activities. It is calculated as
the ration of Lines of non-progressive statements in a loop to
Total lines in the loop. The good stall statements include
statements to write error messages, writing logs etc. Code
with high stall ratio is more prone to attack. CCP measures the
total number of methods that could be affected by erroneous
originating method. It is given as number of child methods
invoked with the parameter(s) based on the parameter(s) of
the original invocation. CER is calculated as ratio of Critical
Data Elements in an Object to Total Number of Elements in
the Object. The critical elements can be corrupted by the
malicious user input. If the critical data objects change, the
whole process may be subject to security risk. Thus, the code
with higher CER should be tested more carefully [10].

Testing - Testing phase relates to metrics like Ratio of
security test cases (Rtc) and, Ratio of security test cases that
fail (Rtcp) [4]. Measures for testing security also comprise of
Percentage of defects discovered during testing that was
injected in coding, in architecture and design, and in
requirements specification; Percentage of software
components with demonstrated satisfaction of security
requirements as represented by a range of testing approaches;
and Percentage of software components that demonstrated
required levels of attack resistance and resilience when subject
to attack patterns, misuse/abuse cases, and other specified
means of threat modelling and analysis [6]. SANS reading
room provides testing metrics as Security Testing Coverage
[15].

Maintenance – The observed maintenance phase metrics
include Ratio of software changes due to security

Smriti Jain et al / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2627-2631.

2629

consideration (Rsc), and Ratio of patches issued to address
security vulnerabilities (Rp) [4]. Other metrics are Mean time
between security incidents, Mean-time to patch, Mean-time to
complete changes, Percent of changes with security
exceptions [5].

Documentation – Technical documentation has been
assessed for quality using GQM approach using clone
detection and test coverage analysis [12].

B. System Level Security Metrics

Security metrics are defined on the basis of vulnerabilities

and are proposed on the basis of Common Vulnerabilities and
Exposures (CVE), an industry standard for vulnerability and
exposure names, and the Common Vulnerability Scoring
System (CVSS), a vulnerability scoring system designed to
provide an open and standardized method for rating software
vulnerabilities. Metrics defined is representative weakness of
software i.e. those weaknesses that lead most of the
vulnerabilities to be exploited by the attackers and are given
below

Where SM(s) is security metrics for the software s, and Wi

(i = 1, 2, …, m) are the severity of weakness in the software s
and P (i = 1, 2, …, m) represents the risk of the corresponding
weakness. Wn is the severity of the weakness and is given by

where K is number of vulnerabilities of weakness W with
corresponding base scores as Vi.

Pn is expressed as percentage and is given by occurrence of

each weakness in the overall weakness

Rn is the frequency of occurrences of each representative weakness,
K during M months.

Thus, the authors have defined software security metrics on

the basis of representative weakness [1].

Common Criteria (CC) also defines seven assurance levels
varying from EAL1 to EAL7, and are metrics to rank
assurance on evaluated products [13]. NIST presents system
level controls addressing the information security program
which includes access control, awareness and training, audit

and accountability, etc. It provides some the measures for
audit processing failures that include software/ hardware
errors, failures in the audit capturing mechanisms, and audit
storage capacity being reached or exceeded [14]. CIS security
outcome and practice metrics define 20 metrics under six
business functions. Risk Assessment Coverage and Security
Testing Coverage metrics assess the application security. The
change management metrics include Mean time to complete
changes, Percent of Changes with security reviews, Percent of
changes with security exceptions. Vulnerability management
metrics include Mean-time to mitigate vulnerabilities, Number
of known vulnerability incidences etc. [15].

IV. RESULTS AND CONCLUSION

A number of metrics listed in the Section 3 are established
for different software development life cycle activities. It has
been revealed that most of the security metrics in software
development process assess security risks and evaluate risk
coverage at each stage of software development. Some of the
authors do not provide the means for data collection and the
method to calculate the metrics. Some of the metrics
developed had not been tested for assessing the impact on
product security, while others have proposed security metrics
for specific life cycle activity. In the paper that defines
security metrics for risk assessment during various stages of
life cycle, some of the metrics can be assessed only later in the
software development process and not during the software
development stage itself. Another set of metrics proposed on
code inspections enable to assess security after full system
implementation which makes it impossible to fix them early.
A set of metrics for object oriented design assesses security
when UML class diagram using UMLsec and SPARK’s
annotations are provided, limiting its utility. The code metrics
developed are based on the vulnerabilities as listed in CWE,
CVE and CVSS that makes it quite useful for assessing only
the code.

It is observed that the metrics developed have not
considered the reasons for insecurity during SDP. Thus, there
remains the scope of development of metrics for quantitative
assessment of security using the reasons for security loop
holes in the software identified during SDP.

REFERENCES
[1] J. A. Wang, H. Wang, M. Guo, and M. Xia, “Security Metrics for

Software Systems,” In the Proc. of ACMSE '09 March 19-21, 2009.
[2] Network magazine, Oct 2006,. [Online] Avaliable:

http://www.networkmagazineindia.com/200610/vendorvoice02.shtml
[3] Secure SDLC’s Compared, KRvW Associates, LLC, 2008. [Online]

Avaliable:
http://www.secappdev.org/handouts/2008/Secure%20SDLCs%20compa
red.pdf

[4] K. Sultan, A. En-Nouaary, A. Hamou-Lhadj, “Catalog of Metrics for
Assessing Security Risks of Software throughout the Software
Development Life Cycle.” In the Proc. of International Conference on
Information Security and Assurance, IEEE Computer Society, 2008, pp.
461-465.

[5] The CIS Security Metrics, Nov. 2010. Accessed on 18-Oct-2011.
[Online]. Available:

Smriti Jain et al / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2627-2631.

2630

https://benchmarks.cisecurity.org/tools2/metrics/CIS_Security_Metrics_
v1.1.0.pdf

[6] J. Allen, “Measuring Software Security,” CERT Research Annual
Report, Software Engineering Institute, Carnegie Mellon University, pp.
64-65, 2009.

[7] D.Mellado, E. Fernández-Medina and M. Piattini, “A Comparison of
Software Design Security Metrics,” In the proc. of ECSA, 2010, pp
236-242.

[8] S. Jain, “Involving Security in Software Development Process – A
Suggestive View”. In the Proc. of National Conference on Emerging
Technologies in Electronics, Mechanical and Computer Engineering,
Indore, India, 2010.

[9] “Potentially Serious Security Flaws Found In Most Bank Websites,
Including Large Bank Sites, Study Shows.” Science Daily, July 23,
2008.
http://www.sciencedaily.com/releases/2008/07/080722175802.htm.

[10] I. Chowdhury, B. Chan, and M. Zulkernine, “Security Metrics for
Source Code Structures,” In the Proc. of SESS’08, Germany, May 17–
18, pp. 57-64, 2008.

[11] B. Alshammari, C. Fidge and D. Corney, “Security Metrics for Object-
Oriented Designs,” IEEE Computer Society, pp. 55-64, 2010.

[12] A. Wingkvist, M. Ericsson, R. Lincke and W. Lowe, “A Metrics-Based
Approach to Technical Documentation Quality,” In the Proc. of Seventh
International Conference on the Quality of Information and
Communications Technology, IEEE Computer Society, 2010.

[13] CCIMB-2004-01-003, Common Criteria for Information Technology
Security Evaluation: Security assurance requirements and Protection
Profiles Version2.2, 2004.

[14] Information Security, NIST Special Publication 800-53, Revision 3,
August 2009. [Online]. Available:
http://csrc.nist.gov/publications/nistpubs/800-53-Rev3/sp800-53-rev3-
final.pdf

[15] C. E. Nelson, “Security Metrics - An Overview”, ISSA Journal, pp. 12-
18, , August 2010.

[16] A.J.A. Wang, “Information Security Models and Metrics,” 43rd ACM
Southeast Conference, pp. 2.178 – 2.184, 2005.

Smriti Jain et al / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2627-2631.

2631

